
PERFORMANCE CONCEPTS 
This chapter attempts to lay a foundation for software performance engineers by introducing the 

fundamental concepts that are encountered in computer performance evaluation. It defines key 

terms like response time, bandwidth and throughput that are used throughout this book. Many of 

the fundamental concepts discussed here are mathematical in nature. A few simple formulas are 

discussed, including the Utilization Law that shows the relationship between request rates, service 

times, and resource utilization. Some basic concepts from analytic queuing theory are also 

discussed, including Little’s Law that relates request rates, response times and queue depth.  

Insights from queuing models are especially useful in understanding and predicting the behavior of 

computer applications under the impact of load. Experienced computer performance professionals 

realize that computer systems seldom degrade gracefully. Sometimes the root cause of this sudden 

degradation is simply an overloaded resource, a bottleneck that constricts or disrupts the regular 

flow of requests and responses. So long as the load on this bottlenecked resource remains below its 

critical threshold, performance of the application is adequate. But once this a threshold is crossed, 

the application can be subject to severe degradation. What is even more diabolical is that once this 

critical threshold is reached, a very small increase in the amount of work will lead to a 

disproportionately large increase in the response time of the application. 

Sometimes the root cause is a flaw in the code being used to solve the problem. For example, any 

algorithm characterized as NP-complete has the fatal flaw that as the problem domain expands, the 

amount of computation expands exponentially, potentially rendering the algorithm unusable as the 

problem space grows larger and larger. Sometimes the problem results from a mistake or an 

oversight, such as the use of an inefficient algorithm wasn’t noticed unit testing until the result set 

being operated upon grew sufficiently large. 

One familiar and very well documented example of this phenomenon refers back to the early days of 

the Internet in the mid-1980s when it would suffer a “collapse.” As the technology associated with 

the Internet began to roll out to colleges and universities connected to the early network, the TCP/IP 

networking traffic between interconnected computer systems started to increase, the response 

times of the file transfer programs in use at the time suffered major degradation. This “collapse” was 

associated with a performance issue that rendered the original version of the Internet virtually 

unusable – ironically, just as the idea of using the Internet to communicate between computers of 

many different kinds was beginning to prove very popular.  

Networking engineers began to understand that the root cause of this serious performance problem 

was not the overall capacity of the network to handle the traffic between the network connections. 

It was related more to the variability in the capacity of the different computers that were connected 

with each other. More specifically, these problems were associated with dropped packets that led to 
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an increase in the number of retransmitted packets whenever a very powerful Sender machine was 

trying to send a large amount of data to a much less powerful Receiver endpoint. Ultimately, this 

understanding led to the development of the congestion control algorithms that were then added to 

the TCP protocol. 

We begin by discussing scalability – the ability of an application to sustain levels of performance in 

the face of more customers, larger data volumes, or more usage in general. Whenever computer 

professionals are discussing application or hardware scalability, they are concerned with core 

computer performance and capacity planning issues. 

SCALABILITY 
Computer professionals worry about scalability based on their experience that many computer 

systems encounter performance problems as the number of users of those systems grows. 

Computer equipment today is extremely powerful, yet performance problems have not 

disappeared. The computing resources you have in place are finite. They have definite limits on their 

processing capability. Scalability concerns what those finite limitations are.  

Figure 2.1 shows two scalability curves. The left hand y-axis represents some measure of work being 

performed by the computer — it could be database transactions per second, disk I/Os per second, 

files transferred, web visitors per hour, or e-mail messages processed per minute. The horizontal x-

axis shows the growth in the number of users of this application. 

Figure 2.1. Ideal vs. actual application scalability.    
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The first curve is a straight line that shows performance increasing linearly as a function of the 

number of users. This is the ideal that application architects strive for. Ideally, as the number of 

concurrent users of an application grows, the user experience does not degrade due to elongated or 

erratic response times. The second curve models the performance obstacles actual system 

encounter as the workload grows. Initially, the actual throughput curve diverges very little from the 

ideal case. But as the number of users grows, actual performance levels tend to be non-linear with 

respect to the number of users. As more users are added and the system reaches its capacity limits, 

the throughput curve eventually plateaus, as illustrated.  

Since scalability considerations emerge with almost every widely used application as it grows, you 

would think experienced developers would anticipate these problems and adjust accordingly. 

Unfortunately, that is too frequently not what happens. There is often intense pressure on the 

development team to deliver a functionally complete application on time and under the budget, 

which inevitably leads to compromises and short cuts in the quality of the software. It is also true 

that performance concerns may not arise until the latter stages of the application development life 

cycle. Experienced developers may warn about the risk of “premature optimization,” making critical 

design decisions with too little information about the state of the final application. Relegating most 

performance testing and stress testing to the final stages of development is even riskier, however. 

Superior results are almost always achieved when rigorous and robust performance testing is 

performance throughout the application development life cycle.  

Deferring large scale performance testing to the latter stages of development also has the 

undesirable effect of conjoining late stage customer Acceptance Testing with performance testing. 

Moreover, when computers applications are initially deployed, the number of users in the beginning 

stages is frequently quite small. Initially, because the current system is not close to pushing up 

against any of its capacity limits, response times, or, more generally, service levels remain at 

acceptable levels. But, as users are added and usage of the application increases, performance 

problems are inevitably encountered.  

Scalability is a core concern whenever you are planning for an application deployment that must 

accommodate a large number of users. Since computer hardware and software have finite 

processing limits, the non-linear behavior illustrated in Figure 2.1 — which is evidence of some form 

of performance degradation — can be expected at some point. The focus of computer capacity 

planning is to determine with some precision at what point, as the number of users grows, there is 

enough performance degradation that it begins to interfere with the smooth operation of this 

application. 
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The branch of software engineering most associated with performance investigations – figuring out 

where the capacity limits of a current application lie and designing a new application or feature so 

that it meets its performance goals – is known as software performance engineering. In many 

organizations, performance engineers are also the team responsible for late stage performance 

stress testing for a new application or feature as a part of certifying the quality of new feature prior 

to releasing it.  

Inevitably, computer systems reach their capacity limits. At that point when more users are added, 

they no longer scale linearly. The focus of computer capacity planning for real world workloads, of 

course, is to anticipate at what point serious performance degradation can be expected. Once you 

understand the characteristics of your workload and the limitations of the computer environment in 

which it runs, you ought to be able to forecast the capacity limits of an application server.  

In many instances, you can use stress testing tools to simulate a growing workload until you 

encounter the capacity limits of your hardware. In simulated benchmark runs using a stress testing 

tool, from which the throughput curves in Figure 2.1 are drawn, the number of users is increased 

steadily until tell-tale signs of non-linear scalability appear. Stress testing your important 

applications to determine at what point serious performance degradation occurs is one effective 

approach to capacity planning. There are also analytic and modeling approaches to capacity planning 

that are effective. The mathematical relationships between key performance measurements that are 

discussed in the next section of this chapter are the basis for the analytic approaches.  

For example, suppose you are able to measure the following:  

• The current utilization of a potentially saturated resource like a processor, disk, or network 

interface 

• The average contribution from an individual user to that’s resource’s utilization, and 

• The rate at which the number of application users is increasing 

Using a simple formula called the Utilization Law, which is defined below, you will be able to 

estimate the number of users it will take to drive the designated resource to its capacity limits when 

it is bound to become a performance bottleneck. Both stress testing your application and the 

analytic techniques lead to a prediction about when you are about to run out of capacity. Once you 

understand the circumstances that could cause you to run out of capacity, you ought to be able to 

formulate a strategy to cope with the problem in advance.  
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Experienced computer performance analysts understand that non-linear scalability is to be expected 

when you reach the processing capacity at some bottlenecked resource. You can expect that 

computer performance will cease scaling linearly suddenly at some point as the number of users 

increases. As the system approaches its capacity limits, various performance statistics that measure 

throughput, the amount of work being performed, tend to level off. Moreover, computer systems do 

not degrade gracefully. When a performance bottleneck develops, measures of application response 

time tend to increase very sharply.  

What is particularly unforgiving about working with machines with finite capacity limits is that, when 

those limits are reached, a slight increase in the amount of work that needs to be processed causing 

a very sharp increase in the response time. This non-linear relationship between utilization and 

response time is also explored in this chapter. 

Being able to observe a capacity constraint that limits the performance of some real-world 

application as the load increases, as illustrated in Figure 2.1, is merely the starting point of computer 

performance analysis. Once you understand that a bottleneck is constraining the performance of the 

application, your analysis should proceed to identify the component of the application (or the 

hardware environment that the application runs under) that is the root cause of the constraint. This 

book tries to provide examples and guidance on how to perform a bottleneck analysis, but you 

should be prepared that this is a step that may require considerable effort and skill.  

If you can successfully reproduce the scalability issues an application encounters in a performance 

test lab environment, there is an opportunity to use profiling tools to investigate the source of the 

problem. Different types of profiling tools are useful in identifying different types of performance 

problems – investigating memory problems requires a very different set of performance 

measurements than does investigating a program that uses too much CPU time to execute. In fact, 

the most frequent mistake made by users of profiling tools is they select the wrong profiling tool for 

their particular problem. We will some profiling tools in action in the next chapter.   

Once you have identified a bottleneck, you may then proceed to consider various steps that can be 

taken to relieve this capacity constraint on your system. This is also a step that may require 

Caution 

Many published articles that discuss the application scalability display 

graphs of performance levels that are reported as a function of an ever 

increasing number of connected users, similar to Figure 2.1. These articles 

often compare two or more similar applications and show which has the 

better performance. They are apparently intended to provide capacity 

planning guidance. But unless the workload used in the tests matches your 

own, the results of these benchmarks may have little applicability to your 

specific problems. 
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considerable effort and skill. The alternatives you evaluate are likely to be very specific to the 

problem at hand. For example, if you determine that network capacity is a constraint on 

performance for one of your important applications, you will need to consider any of the practical 

approaches to reducing the application’s network load, for example, by compressing data before it is 

transmitted over the wire, or, alternately, adding network bandwidth. You may also need to weigh 

both the potential cost and benefits of the alternatives proposed before deciding on an effective 

course of action to remedy the problem. Some of the factors to consider include: 

• how long it will take to implement the change and bring some desperately needed relief to the 

situation, 

• how long the change will be effective, considering the current growth rate in the application’s 

usage, and 

• how to pay for the change, assuming there are additional costs involved in making the change 

(i.e., additional hardware or software that must be procured, etc.) 

Bottleneck analysis is a proven technique that can be applied to diagnose and resolve a wide variety 

of performance problems. Your success in using this technique depends on gathering the relevant 

performance statistics you will need to understand where the bottleneck is. Effective performance 

monitoring procedures are a necessary first step. Understanding how to interpret the performance 

information you gathered is also quite important. 

In benchmark runs, simulated users continue to be added to the system beyond its saturation point. 

Since these articles only report on the behavior of simulated “users,” they can safely ignore the 

impact on real customers and how they react to a computer system that has reached its capacity 

limits. In real life, you must deal with dissatisfied customers that are reacting harshly to erratic 

performance conditions. There may also be serious economic considerations associated with 

performance degradations. Workers that rely on computer systems to get their daily jobs done on 

time will lose productivity. Customers that rely on your computer-based applications may become so 

frustrated that they start to turn to your competitors for better service. In an e-commerce 

application, conversion rates may suffer. When important business applications reach the limits of 

their scalability on current hardware and software, one of those crisis-mode interventions discussed 

in the Introduction is likely to ensue. 

KEY PERFORMANCE MEASUREMENTS 
This section introduces the standard computer performance terminology that will be used often in 

the remaining chapters of this book. Before you are able to apply the practices and procedures that 
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are recommended here, it is a good idea to acquire some familiarity with these basic computer 

measurement concepts.  

Computers are electronic machines designed to perform calculations and other types of arithmetic 

and logical operations. The components of a computer system – its Central Processing Unit (CPU) or 

processor, disks, Network interface card, etc. – that actually perform the work are known generically 

as its resources. Each resource has a finite capacity to perform designated types of work. Customers 

generate work requests for a server machine (or machines) to perform. In this book, we are 

concerned primarily with server machines designed to process requests from multiple customers 

concurrently. Nevertheless, the same concepts apply to single user workstations and mobile devices, 

as well. In analyzing the performance of a particular computer system with a given workload, we 

need to measure  

• the capacity of those machines to perform this work,  

• the rate at which they are currently performing it, and  

• the time it takes to complete specific tasks. 

The next section defines the terms that are commonly used to describe computer performance and 

capacity and describes how they are related to each other. 

DEFINITIONS 

It is almost a cliché to declare that you cannot manage what you cannot measure, but this bit of 

wisdom certainly applies to computer performance management. To be able to evaluate the 

performance of a computer system, you need a thorough understanding of the important metrics 

used to measure computer performance. Computers are machines designed to perform work, and 

we measure their capacity to perform the work, the rate at which they are currently performing it, 

and the time it takes to perform specific tasks.  

Collectively, the measurements of computer performance we gather at specific points in time 

represent a time series, a sequence gathered at pre-determined intervals or when specific events of 

interest occur. We will see in a later section that the clocks and timer facilities available in Windows 

to use for our measurements have special considerations of their own. For example, each socket in a 

multi-socket server relies on its own on-board clock. The separate clocks on the different sockets are 

not synchronized and are subject to some amount of drift over time. Consequently, within a multi-

socket computer there is no single clock value that can be referred to that is absolutely 

authoritative.  
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You can try to synchronize the clock on your computer periodically to an authoritative radio time 

signal using the Network Time Protocol, or NTP. For instructions on how to set up NTP on Windows, 

see the Knowledge Base article “How to configure an authoritative time server in Windows Server.” 

NTP, experts say, should allow the computer’s clock to be accurate to within about 30-50 

milliseconds.1 For two computers located in the same data center, even a disparity as small as 30 

milliseconds can be problematic for some fine-grained measurements made on computers that are 

capable of executing millions of instructions in that time interval. For two different computers 

located in two different regions of the world, even if both attempt to synchronize to the same 

authoritative remote time source, you need to accept the fact that time itself is relative in the 

physical universe.2 

Most performance problems can be analyzed in terms of the computer resources utilized, queues, 

service requests, and response time. This section defines these basic performance measurement 

concepts. It describes what they mean and how they are related.  

Two of the key measures of computer capacity are bandwidth and throughput. Bandwidth is a 

measure of capacity, the rate at which work can be completed, while throughput measures the rate 

at which work requests are completed. Scalability, as discussed in the previous section, is often 

defined as the throughput of the machine or device as a function of the total number of Users 

requesting service. How busy the various resources of a computer system get is known as their 

utilization. How much work resources can process at their maximum level of utilization is defined as 

their capacity.  

The key measures of the time it takes to perform specific tasks are queue time, service time, and 

response time. The term, latency is often used in an engineering context to refer to either service 

time or response time. Response time will be used consistently here to refer to the sum of service 

time and queue time. In networks, another key measure is round trip time, the amount of time it 

takes to send a message and receive a confirmation message (an Acknowledgement or ACK, for 

short) in reply.  

1.                                                                                  

1 The National Institute of Standards and Technology publishes very detailed specifications on the authoritative 

radio time signal that is maintained for use in the United States. See “How Accurate is a Radio Controlled 

Clock?” for more details. 

2 Reportedly, it was while examining patent applications for inventions that attempted to address the problem 

of clock synchronization for geographically distributed railroad stations across Europe for the Swiss Patent 

Office where he worked shortly after graduating with a degree in Physics that stimulated Albert Einstein to 

formulate his Theory of Relativity. For an interesting historical perspective on the problem of time 

synchronization, see Peter Galison, Einstein's Clocks and Poincare's Maps: Empires of Time.  

http://support.microsoft.com/kb/816042
http://tf.nist.gov/general/pdf/2429.pdf
http://tf.nist.gov/general/pdf/2429.pdf
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When a work request arrives at a busy resource and cannot be serviced immediately, the request is 

then queued. Queued requests are subject to a queue time delay before they are serviced. The 

number of requests delayed waiting for service is known as the queue length. 

THE ELEMENTS OF A QUEUING SYSTEM 

Figure 2.2 illustrates the elements of a simple queuing model. It depicts customer requests arriving 

at a server for processing. This example illustrates customer requests for service arriving 

intermittedly. The customer requests are for different amounts of service. Because individual 

requests are independent of each other, both the service request arrival rate and service time 

distributions are non-uniform.  The server that is depicted could be a processor, disk, or Network 

Interface card (NIC). If the device is free when the request arrives, it goes into service immediately. If 

the device is already busy servicing some previous request, the request is queued. Service time 

refers to time spent at the device while the request is being processed. Queue time represents time 

spent waiting in the queue until the server becomes available. Response time is the sum of both 

service time and queue time. How busy the server gets is its utilization. 

Figure 2.2. The elements of a queuing system. 

 Note 

The way terms like response time, service time, and queue time are defined 

here is consistent with the way these same terms are defined and used in 

Queuing Theory, a formal, mathematical approach that is used widely in 

computer performance analysis. See the References section at the 

conclusion of this chapter for more information about Queuing Theory. 
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The computer resource and its queue of service requests depicted in Figure 2.2 leads to a set of 

mathematical formulas that can characterize the performance of this queuing system. Some of these 

basic formulas in queuing theory are described below. Of course, this model is too simple. Real 

computer systems are much more complicated. They have many resources, not one, and these 

resources are interconnected. At a minimum, you might want to depict some of these additional 

resources, including the processor, one or more disks and Network Interface cards. Conceptually, 

these additional components can be linked together in a network of queues, as illustrated in Figure 

2.3. Computer scientists can successfully model the performance of complex computer systems 

using queuing networks such as the one depicted here in Figure 2.3. When specified in sufficient 

detail, queuing networks, similar to the one illustrated, can model the performance of complex 

computer systems with great accuracy. 
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Figure 2.3   A simple computer system modeled as a network of queues. 

 

BANDWIDTH 
Bandwidth measures the capacity of a link, bus, channel, interface, or the device itself to transfer 

data. It is usually measured in either bits/second or bytes/second (where there are eight bits in a 

data byte). For example, the bandwidth of a 1000BaseT Ethernet connection is 1000 Mbits/sec 

(Megabits), the bandwidth of a Serial ATA 3.0 disk is 600 MBytes/sec (MegaBytes), the bandwidth of 

a USB 3.0 Port is 625 MB/sec, and the bandwidth of the PCI-X 3.0 32-bit interface is 64 GBytes/sec. 

(Wikipedia contains a table of device bit rates that is a useful reference.) 

Bandwidth usually refers to the maximum theoretical data transfer rate of a device under ideal 

operating conditions. Therefore, it is an upper-bound on actual performance. You are seldom able to 

measure the device actually performing at its full rated bandwidth. Devices do not obtain their 

advertised performance level because there is often overhead associated with servicing work 

requests. For example, you can expect operating system overhead, protocol message processing 

time, and delay in disk positioning to absorb some of the available bandwidth for each request to 

read or write a disk. Packet-oriented data transfer protocols, for example, automatically add some 
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http://en.wikipedia.org/wiki/List_of_device_bandwidths
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amount of error detection bits to the bit stream as they transfer it to the disk. These overhead 

factors mean that the application can seldom use the full rated bandwidth of a disk for data transfer.  

For another example, various protocol headers and the overhead of adding error detection bits 

associated with the network communication protocols reduce the theoretical capacity of a 1000 

Mbit/sec Gigabit Ethernet link to significantly less than 100 megabytes/sec. Consequently, it is 

usually more realistic to discuss effective bandwidth or effective capacity — the amount of work that 

can be accomplished using the device under real world conditions. 

THROUGHPUT 
Throughput measures the rate work requests are completed, from the point of view of some 

observer. Examples of throughput measurements include the number of reads per second from the 

disk or file system, the number of instructions per second executed by the processor, HTTP requests 

processed by a Web server, and transactions per second that can be processed by a database 

engine.  

Throughput and bandwidth are very similar. Bandwidth is often construed as the capacity of the 

system to perform work, while throughput is the current observed rate at which that work is being 

performed.  

UTILIZATION 
Utilization measures the fraction of time that a device is busy servicing requests, usually reported as 

a percent busy. Utilization of a device varies between 0 and 1, where 0 is idle and 1 (or 100%) 

represents utilization of the full bandwidth of the device. It is customary to report that the processor 

or CPU is 75% busy or the disk is 40% busy. It is not possible for a single device to ever appear 

greater than 100% busy. 

Measures of resource utilization are commonly reported as Windows performance counters. Later in 

this book, many of the specific resource utilization measurements that you are able to gather on 

your Windows machines will be described. You can easily find out how busy the processors, disks, 

and network interfaces are on your machines. I will also describe how these utilization 

measurements are derived by the operating system, often using indirect measurement techniques 

that save on overhead. Knowing how certain resource utilization measurements are derived will help 

you understand how to interpret them.  

The utilization of a device is related directly to the observed throughput (or request rate) and service 

time as follows: 
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 Utilization = Throughput × Service Time 

This simple formula relating device utilization, throughput, and service time is known as the 

Utilization Law. The Utilization Law makes it possible to measure the throughput and service time of 

a disk, for example, and derive the disk utilization.  

For a simple example of the Utilization at work, consider a disk that processes 20 input/output (I/O) 

operations per second with an average service time of 10 milliseconds is busy processing requests 20 

× 0.010 every second, and is said to be 20% busy.  

Alternatively, we might measure the utilization of a device using a sampling technique while also 

keeping track of throughput. Using the Utilization Law, we can then derive the service time of 

requests. Suppose we sample a communications bus 1000 times per second and find that it is busy 

during 200 of those measurements, or 20%. If we measure the number of bus requests at 2000 per 

second over the same sampling interval, we can derive the average service time of bus requests 

equal to 0.2 ÷ 2000 = .0001 seconds or 100 microseconds (µsecs). Notice under these circumstances 

that sampling the utilization is a more efficient way to calculate the service time of the requests than 

measuring service times directly.  

Monitoring the utilization of various hardware components is an important element of any capacity 

planning exercise. If an application server is currently processing 60 requests per second with a CPU 

utilization measured at 20%, the server apparently has considerable reserve capacity to process 

requests at an even higher rate. On the other hand, a server processing 60 transactions per second 

running at a CPU utilization of 98% is operating at or near its maximum capacity. 

In forecasting your future capacity requirements based on current performance levels, 

understanding the resource profile of workload requests is very important. If you are monitoring an 

IIS web server, for example, and you measure processor utilization at 20% busy and the transaction 

rate at 50 HTTP Get Requests/sec, it is easy to see how you might create the following capacity 

forecast: 

Table 2.1 

HTTP Get Requests/sec % Processor Time 

50 20% 

100 40% 

150 60% 

200 80% 

250 100% 
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The measurements you have taken and the analysis you have performed allow you to anticipate that 

having to process 250 HTTP Get Requests/sec at this web site would exhaust the current processor 

capacity. This should then lead you to start tracking the growth of your workload, with the idea of 

recommending adding processor capacity as the Get Request rate approaches, say, 200 per second, 

for example. 

You have just executed a simple capacity plan designed to cope with the scalability limitations of the 

current computer hardware environment for this workload. Unfortunately, computer capacity 

planning is rarely so simple. For example, web requests use other resources besides the CPU, and 

one of those other resources might reach its effective capacity limits long before the CPU becomes 

saturated.  

But there are other complicating factors. One operating assumption in this simple forecast is that 

processing an HTTP Get Request in this environment requires 0.4% processor utilization, on average. 

This is based on your empirical observation of the current system. Other implicit assumptions in this 

approach include:  

a. Processor utilization is a simple, linear function of the number of HTTP Get 

Requests being processed, and 

b. The service time distribution for execution time on a processor per HTTP Get 

Request — the amount of Processor utilization per Request — remains 

constant. 

Unfortunately, these implicit assumptions may not hold true as the workload changes and grows. 

Due to caching effects, for example, it is quite plausible that the amount of processor time per 

request may vary as the workload grows. If the caching is very effective, the average amount of 

processor time per request may actually decrease. If the caching loses effectiveness as the workload 

grows, the average amount of processor time consumed per request may increase. The amount of 

CPU time consumed on average per request may also change as new features are added to the 

application or optimizations or other improvements are introduced. It may also change depending 

on the hardware the application runs on, or under the impact of virtualization. 

You will need to continue to monitor this system as it grows to see which of these cases holds. 

The component functioning as the constraining factor on throughput — in this case, the processor — 

is designated as the bottlenecked device. If you improve performance at the bottlenecked device — 

by upgrading to a faster component, for example — you are usually able to extend the effective 

capacity of the computer system to perform more work. 
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It is not always so easy to identify the bottlenecked device in a complex, inter-related computer 

system or network of computer systems For one thing, 100% utilization is not necessarily the target 

threshold for all devices.  

For example, one complicating factor in assessing the capacity limits of processor hardware is the 

feature Intel calls Hyper-Threading or HT, which is more generically known as simultaneous 

multithreading. Simultaneous multithreading is the capability of a single processor core to process 

multiple instructions concurrently. Intel’s HT technology can be very effective at low utilization and 

when the threads executing in parallel are accessing disjoint areas of memory. It is as if a single 

processor core can do the work of two (logical) processors. On the other hand, if the threads being 

executed in parallel represent similar processing tasks that share access to the same memory 

locations, internal processor resource conflicts can arise. Under these circumstances, the 

performance of a single processor core with two logical processors performs worse than the single 

processor core with HT disabled. (We will review an example of this later in this book.) The target 

utilization for HT logical processors is closer to 75% than 100%.  

Other kinds of computer equipment perform more efficiently under heavier loads, especially when 

caching techniques are involved. These and other anomalies make the simple, straight line 

projections shown in Table 2.1 quite prone to error. 

SERVICE TIME 
Service time measures how long it takes to process a specific customer work request. Engineers 

alternatively often speak of the length of time processing a request as the device’s latency, another 

word for delay. For example, memory latency measures the amount of time it takes for the 

processor to fetch data or instructions from RAM or one of its internal memory caches. Other 

related measures of service time are the turnaround time for requests, usually ascribed to longer 

running tasks, such as disk-to-tape backup runs. The round trip time is an important measure of 

network latency because when a request is sent to a destination across a communications link using 

the TCP/IP protocol, the sender must wait for a reply. 

The service time of a file system request, for example, will vary based on whether the request is 

cached in memory or requires a physical disk operation. The service time will also vary if it is a 

 Tip 

Measuring utilization is often very useful in detecting system bottlenecks. 

Bottlenecks are usually associated with processing constraints at some 

overloaded device. It is usually safe to assume that devices observed 

operating at or near their 100% utilization limits are bottlenecks, although 

things are not always that simple, as discussed below. 
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sequential read of the disk, a random read of the disk, or a write operation. The expected service 

time of the physical disk request also varies depending on the block size of the request. These 

workload dependencies demand that you measure disk service time directly, instead of relying on 

projections based on some idealized model of disk performance. 

The service time for a work request is often assumed to be constant, a simple function of the 

device’s speed or its capacity. While this is largely true, under many circumstances this assumption is 

false. Device service times can vary as a function of utilization. Using intelligent scheduling 

algorithms, it is often possible for processors and disks to work more efficiently at higher utilization 

rates. You are able to observe noticeably better service times for these devices when they are more 

heavily utilized. Many of these intelligent scheduling algorithms are described in greater detail later 

in this book. 

CACHE EFFECTS 
Caching algorithms also effect service time distributions, and caching techniques are in widespread 

use. Caches are used inside the processor and disk hardware, for instance. Virtual memory functions 

like a cache across process virtual address spaces. In fact, one of the physical memory pools that the 

Windows Manager creates is informally known as the “Cache.” A database management system like 

SQL Server implements extensive data caching. The use of caching is ubiquitous in web applications. 

Caching is performed inside the web browser client, in a Content Delivery Network (or CDN), at the 

IIS web level, and, potentially, inside the ASP.NET application itself. 

When the data requested by the application is found in the cache, it is known as a cache hit. On a 

cache hit, the service time for the request is significantly reduced compared to a cache miss because 

it is not necessary to expend time re-creating the requested data. Due to caching effects, service 

time distributions are often bi-modal due to the large differential in the amount of processing 

needed for cache hits versus cache misses. 

When an application that relies on caching initializes, the cache itself is empty of the content the 

application requires. So, initially, the cache is very ineffective and the cache hit ratio is near zero. 

This initial condition is known as a cold start. Then, as the application runs, the cache begins to fill 

and gains effectiveness, eventually reaching a steady state where cache hit rates are stable. When 

you run a performance stress test, it is a good practice to have a warm-up period where you allow 

the application under stress to execute for an initial period of time until this steady state is reached 

and service time measurements stabilize. 

Inside the processor hardware, a thread context switch occurs when the processor stops executing 

one program thread and begins to execute another. On a context switch, the instruction cache and 

virtual address translation buffers of the processors are effectively flushed. For some period of time 

after the context switch occurs, execution of instructions from the new thread are subject to a cold 
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start in the hardware caches. The Windows Thread Scheduler implements processor affinity on 

multiprocessors by dispatching a new thread on the same processor that it ran on last, assuming 

that processor is available. Processor affinity in thread scheduling is designed to ameliorate the big 

performance impact that context switches have due to cold starts in the processor-level caches. 

DECOMPOSITION 
The service time spent processing a .NET Web application request can be broken down into 

respective processing components: for example, time spent in the application code, time spent 

during processing in the business logic layer performed by .NET components, time spent in the 

operating system, and time spent in the database processing tier. For each one of these 

subcomponents, the application service time can be further decomposed into time spent at various 

hardware components, e.g., the CPU, the disk, the network, etc.  

Decomposition is an important technique used in computer performance analysis to relate a 

workload to its various hardware and software processing components. To decompose application 

service times into their component parts, you must understand how busy various hardware 

components are and, specifically, how workloads contribute to that utilization. This can be very 

challenging in many Windows web applications due to their complexity. You may need to gather 

detailed trace data to map all the resources used by applications definitively back to the component 

parts of individual requests. 

RESPONSE TIME 
Response time is the sum of service time and queue time: 

 Response time = service time + queue time 

Consequently, it represents both the device latency and any queuing delays that accrue while the 

request is queued waiting for the device. At heavily utilized devices, queue time can represent the 

bulk of the observed response time. Queue time is discussed in greater detail in the next section. 

Application response time measurements are important for two main reasons. The first is that 

application response time measurements correlate with customer satisfaction. In survey after survey 

of customers, performance concerns usually rank just below reliability (i.e., bugs and other defects) 

as the factor most influential in forming either a positive or negative attitude towards an application. 

They are a critical aspect of software quality that you can measure and quantify. 

In performance analysis, application response time measurements are also essential to apply any of 

the important analytic techniques that people have developed over the years for improving 

application response time. These techniques include using queuing models and related 
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mathematical techniques used by capacity planners to predict response time in the face of growing 

workloads and changing hardware. Any form of optimization or tuning you want to apply to your 

application also needs to be grounded – how can you know if this or that optimization leads to an 

improvement if you are not measuring response times, both before and after. Even knowing which 

aspect of the application’s response time to target requires measurements that allow you to break 

the response times you observe into their component parts – CPU, IO, network, etc., the analysis 

technique mentioned above that is known as response time decomposition. 

Because they best encapsulate the customer’s experience interacting with an application hosted on 

a Windows machine, measures of application response time are among the most important in 

computer performance and capacity planning. Quite simply, when application response time 

measurements are not readily available, performance management becomes very arbitrary. If you 

are limited to a mere anecdotal account that some application is “slow,” you don’t know how to 

interpret that report. How slow is it? Is it slow compared to yesterday, or last week, or the last time 

a major change was applied to the system? How many customers are experiencing this slowness? Is 

the problem limited to a few, select scenarios, or is this “slowness” a systemic condition?  

SERVICE LEVEL REPORTING 

Because measurements of application response time are so important, there are important 

guidelines and best practices to use when reporting response time measurements. Reports detailing 

application response times are preferred to ones that merely show the utilization of computer 

resources like the CPU or disk or the service times for these devices, and are greedily consumed by 

managers and IT executives. These are called service level reports. IT organizations often have 

service level agreements (SLAs) in place with customers that specify response time targets and, 

often, penalties when those response time targets are not met.3 Service level reporting is used 

under those circumstances to track compliance with the SLA. 

The first rule for service level reporting is that it is important to emphasize the response time 

distribution, not just report averages. It is too easy for average response time values to obscure the 

fact that certain requests are taking much long to execute. Excessive response time leads to 

dissatisfaction, lower fulfillment rates, and outright customer abandonment in favor of a faster 

application. See Figure 2.4 for a representative example of a service level report that shows a 

histogram of the response time distribution for a specific ASP.NET web page request, a sparkline to 

1.                                                                                  

3 Service level agreements that specify application response time targets with penalties when those targets are 

not met also need to stipulate the rate or volume of customer requests that require processing within the limits 

specified. This step is necessary because computer systems do have finite processing capacity. 

http://office.microsoft.com/en-us/excel-help/analyze-trends-in-data-using-sparklines-HA103452521.aspx
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represent the data visually in time sequence, and provides access to the individual response time 

measurements themselves. 

 

Figure 2.4. A histogram reporting the response time distribution for a web application 

So, instead of merely computing average values, it is usually far better to report on the overall 

response time distribution when it is available. One variation is to target the 90th or 95th percentile of 

the response time distribution. Reporting against a 90th percentile target explicitly lets you know 

that 10% of the requests experienced response times in excess of the threshold. 

To create a histogram or report percentile values of the underlying distribution requires access to 

the individual response time measurements, which then must be sort to calculate the percentiles for 

the range. Whenever the volume of events is large, this approach is problematic – storing all that 

measurement data is expensive and post-processing can be time-consuming. In contrast, statistics 

like the mean, variance and standard deviation are very easy to calculate from continuously 

maintained counters. This is the reason why so many real-time monitoring tools report those 

statistics instead.  

An alternative approach commonly used in real-time monitoring is to maintain a set of buckets for 

response time events, where each bucket is a count of the response time measurements that 

exceeded the target value for each bucket. Mail delivery response time counters are reported using 

buckets in Microsoft Exchange, for instance. Buckets can be problematic if the target values for each 

bucket are not a good match to the underlying distribution, in which case too many of the response 
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time events fall within just one or two of the available buckets. The solution is to configure the 

targets for the buckets based on the underlying distribution, but not too many reporting tools 

provide that option. The alternative is to provide lots of buckets, or hope you simply get lucky with 

the predetermined settings you have chosen. 

Given how important response time measurement data is, it is unfortunate that the data we need is 

not more readily available in many of the Windows applications that you run. For instance, for 

ASP.NET web applications, there are Windows performance counters called the Request Execution 

Time and Request Queue Time. Since the former is a measure of service time and the latter is queue 

time, we ought to be able to add them together to calculate web application response time. These 

two counters actually report the execution time and the queue time of the last ASP.NET request that 

was observed. Since the measurements reflect a single web application request, this measurement 

is, in effect, a randomly sampled value from the overall response time distribution for a busy web 

site. This is useful performance data, but nowhere near as valuable as the full response time 

distribution. Also, you may notice there is no further information about what specific ASP.NET page 

was requested for the measurement reported.  

Fortunately, while good Windows performance counters measuring ASP.NET server-side response 

times are missing, it is possible to acquire web application response time measurements from other 

data sources, including IIS logs and network and HTTP trace data. When we look in depth at ASP.NET 

web application performance in Section 4, we will investigate alternative sources for web application 

response data.  

Note also that the ASP.NET performance counters or tools that process the IIS log can only report 

the time spent processing an HTTP request on the web server, ignoring network transmission times 

and interaction down at the web client. Many authorities prefer end-to-end measurements of web 

application response times that includes the time spent in the network and in web browser 

composition. We will return to this topic in earnest in Section 4. 

Something most people don’t know is that response times for a large number of Windows scenarios 

are instrumented so that Microsoft developers can understand how the software they deliver 

performs. These measurements are gathered under the umbrella of the Microsoft Customer 

Experience Improvement Program, and the data is sent back to Microsoft where it is scrutinized by 

executives and analyzed by the engineering teams. Windows began instrumenting scenarios and 

gathering response time data using predefined buckets following the release of Vista, which was 

poorly received partly due to customer perception about its responsiveness. Here is a blog entry 

discussing some aspects of this program: 

Perftrack is a very flexible, low overhead, dynamically configurable telemetry system. For key 

scenarios throughout Windows 7, there exist “Start” and “Stop” events that bracket the 

http://technet.microsoft.com/en-us/library/ee126127(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/ee126127(v=ws.10).aspx
http://blogs.msdn.com/b/e7/archive/2008/12/15/continuing-our-discussion-on-performance.aspx
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scenario. Scenarios can be pretty much anything; including common things like opening a file, 

browsing to a web page, opening the control panel, searching for a document, or booting the 

computer. Again, there are over 500 instrumented scenarios in Windows 7 for Beta. 

Obviously, the time between the Stop and Start events is meant to represent the 

responsiveness of the scenario and clearly we’re using our telemetry infrastructure to send 

these metrics back to us for analysis. Perftrack’s uniqueness comes not just from what it 

measure but from the ability to go beyond just observing the occurrence of problematic 

response times. Perftrack allows us to “dial up” requests for more information, in the form of 

traces.  

RESPONSE TIME AND USER SATISFACTION 

Service level reporting shows the percentage of customer requests that exceed a threshold value 

chosen because it is directly associated with customer satisfaction are also very effective. Lacking a 

direct measurement of customer satisfaction, many e-commerce web sites establish reporting 

thresholds based on conversion rates.  In e-commerce, the conversion rate is calculated as follows: 

 Conversion rate = # of confirmed orders / # of landing page hits 

It is the rate that visitors to a particular landing page of a web application are converted into 

customers, which is a good enough proxy for customer satisfaction for most business enterprises. 

Many studies show that improvements in web application response times lead to significantly 

improved conversion rates.4 

Lacking empirical data on conversion rates, some authorities recommend using a standard endorsed 

by several performance companies that is known as the Apdex index. The Apdex index was 

developed by Peter Sevcik, a respected networking performance and capacity consultant. The 

customer satisfaction index he developed is based on three zones of application responsiveness – 

response times that lead to fully satisfied customers, response times that are merely tolerated, and 

response times that lead to outright dissatisfaction or frustration. On the face of it, these certainly 

appear to be appropriate categories to use to map user satisfaction to application response times.  

However, the actual relationship between the response times your application provides and 

customer satisfaction is actually somewhat complicated. Human factors research in computer 

science has produced evidence that customers tend to grow accustomed over time to current 

service levels. This acculturation forms a psychological basis for the Toleration category suggested by 

1.                                                                                  

4 See, for example, http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-

ii/, http://kylerush.net/blog/meet-the-obama-campaigns-250-million-fundraising-platform/, and the 

Walmart experience presented at the SF & SV Web Performance Group – 2012-02/16. 

http://apdex.org/overview.html
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://kylerush.net/blog/meet-the-obama-campaigns-250-million-fundraising-platform/
http://minus.com/msM8y8nyh
http://minus.com/msM8y8nyh
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the Apdex methodology. While customers certainly prefer better response times, keep in mind that 

past experiences set baseline expectations – in many respects, human subjects are not that different 

from Pavlov’s dogs in having their expectation shaped by their experiences.  

A better model to use is that humans adapt their behavior to their environment, understanding that 

past experience biases expectations concerning future interactions. Human factors researcher Steve 

Seow in his book Designing and Engineering Time: the Psychology of Time Perception in Software, 

reports that application response time improvements that are less than 15-20% better than current 

levels hardly register with customers. By the same token, performance regressions that degrade 

response times by less than 15-20% are generally not perceived either. Presumably, toleration levels 

are also related to the variability of the response times that customers experience, but Seow’s book 

is silent on that conjecture.  

Since past experience establishes current expectations, in the absence of conversion data or other 

indirect measurements of customer satisfaction, thresholds based on current service levels are a 

reasonable way to get started with service level reporting.  

In a few specific areas, Seow’s book makes practical recommendations for the level of application 

response time that results in customer satisfaction. For instance, there are some human-computer 

interactions where software is used to simulate physical gestures and other similar behavior. 

Examples include echoing a keyboard press or a mouse move gesture on the screen in real-time. 

Human factors research suggests that response times for these kinds of interactions in excess of 300 

milliseconds generate some degree of frustration. In effect, a computer simulation of some physical 

behavior needs to meet the performance expectations of that actual behavior in the real world.   

Outside the narrow area where our software attempts to mimic some physical behavior, in Dr. 

Seow’s view, the relationship between user tolerance and frustration with response times tends to 

be much more context-sensitive that the strict, functional categories that Apdex defines. For 

instance, his book recommends practical software engineering techniques, such as status bars and 

escape key sequences, which can be used to manipulate user perception in your application and 

boost customer tolerance. The salient point is that a customer’s perception of good or bad response 

time is informed by personal history and the expectations that arise based on that history. 

 This makes actual measurements of your customers that reflect the relationship between 

application response times and customer satisfaction, like the conversion rate data discussed above, 

that much more valuable. In web applications, the availability of Real User Measurements (RUM) 

using boomerang.js from Yahoo and similar Site Speed measurements in the Google Analytics 

measurement framework  has enabled many organizations to assess the actual relationship between 

web application response times and conversion rates for their sites and for their customers. Again 

and again, organizations have seen that performance matters.   

http://www.amazon.com/Designing-Engineering-Time-Psychology-Perception/dp/0321509188/ref=sr_1_1?s=books&ie=UTF8&qid=1389916011&sr=1-1&keywords=Steve+Seow
http://yahoo.github.io/boomerang/doc/
http://analytics.blogspot.com/2012/03/measure-your-websites-performance-with.html
http://analytics.blogspot.com/2012/03/measure-your-websites-performance-with.html
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In the absence of actual measurements, the developers of the Apdex index recommend using a 1-

second threshold value to represent satisfied users and a 4-second frustration threshold. Apdex has 

failed to publish any empirical studies to justify using these threshold values, however. Instead of 

plugging in arbitrary customer satisfaction values from Apdex or any other source, it makes better 

sense to adopt thresholds for service level reporting based on current measurements.   

KANO MODELS 

Another way to think about the relationship between application response times and customer 

satisfaction is to use the approach known as the Kano Model, named after the pioneering work of 

Noriaki Kano. Kano argued that not all product features are equally valued in the eyes of customers 

and created a framework for assessing that value. In a Kano Model approach, customers are 

surveyed to determine how much they value certain current and prospective new product features 

to determine if they  

• reflect mandatory minimum requirements,  

• confer a competitive advantage where more of the feature is better, or  

• serve as a positive differentiator that will produce an unexpected and pleasant surprise that 

will delight a potential customer should you succeed in delivering that feature.  

For instance, in an automobile, a vehicle that starts reliably is a minimum requirement, while better 

gas mileage is a competitive advantage. Meanwhile, today a vehicle that can execute a parallel 

parking maneuver automatically is a key product differentiator that is likely to delight a new 

customer.5 These three categories that Kano Models use to identify how customers assess the value 

of a product feature are illustrated in Figure 2.5. 

This is a good way to think about computer performance, too. For computer software, in Kano 

Model terms, surveys of customers tend to show performance as an expected quality feature. 

Customers expect and are accustomed to demanding a certain level of performance. It is a minimum 

requirement. Unlike a Satisfier feature in the Kano Model, better performance does not necessarily 

lead to greater satisfaction. But poor performance is a guaranteed dissatisfier.  

 

1.                                                                                  

5 In the Kano model, the features that are critical to customer satisfaction and quality perception do change 

over time. In the case of automobiles, once virtually every vehicle comes equipped with a parallel parking assist 

feature, adding that feature will no long delight new customers. Over time, a feature that once delighted 

customers will drift into the category of mandatory, minimum requirements as more and more products 

incorporate that innovation. For more on the Kano Model approach, see http://www.six-sigma-

material.com/Kano.html.  

http://www.six-sigma-material.com/Kano.html
http://www.six-sigma-material.com/Kano.html
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Figure 2.5. Kano Models organize the way customers assess the value of a product feature 

into three categories. Customers usually regard software performance as a minimum 

requirement. 

QUEUE TIME 
Since response time is the sum or service time and queue time, it is time we discussed queue time. 

When a work request arrives at a busy resource and cannot be serviced immediately, the request is 

then queued. Requests are subject to a queue time delay once they begin to wait in a queue before 

being serviced. 

Queue time arises in a multi-user computer system because important computer resources are 

shared. These shared resources include the processor, the disks, and network interfaces. This 

sharing of devices is performed by the operating system in a way that is largely transparent to the 

individual programs that are running. Process A that is accessing data located on the hard drive does 

not know the process B is also trying to access the same drive. It is the operating system that makes 

this sharing possible, ensuring that resources that must be acquired and used serially, i.e., one at a 

time, are accessed in the proper manner. If process B directs a request to the C: drive while it is 

already busy with a request from process A, it is a function of the operating system to serialize those 

requests. The request from process is parked in a queue. When the disk signals it has completed the 
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previous request, the OS removes a queued request and sends it to the device. This behavior is 

transparent to both process A and B. 

The operating system guarantees the integrity of shared resources like the processor, disks, and 

network interfaces by ensuring that contending applications access them serially. When a work 

request to access a shared resource that is already busy servicing another request occurs, the 

operating system queues the request and queue time begins to accumulate. Queuing delays occur 

because there are shared resources with multiple applications that are attempting to access them in 

parallel. When there is significant contention for a shared resource because two or more programs 

are attempting to access it at the same time, performance may suffer. 

Of course, one of the major advantages of a multi-user operating system like Windows, compared to 

early versions of Windows that were only designed for single user workstations, is that they can be 

shared among multiple users. However, the one aspect of sharing resources that may not totally 

transparent to executing programs is the potential performance impact due to resource sharing. 

When there is a performance problem on a Windows workstation, only one user suffers. When 

there is a performance problem on a Windows application server, a multitude of computer users can 

be affected. 

On a very heavily utilized system, queue time can become a very significant source of delay. It is not 

uncommon for queue time delays to be longer than the amount of time actually spent receiving 

service at the device. No doubt, you can relate to many real world experiences where queue time is 

significantly greater than service time. Consider waiting in line in your car at a toll booth, back in the 

days when we all did that. The amount of time it takes you to pay the toll is often insignificant 

compared to how long you spent waiting in line. The amount of time spent waiting in line to have 

your order taken and filled at a fast food restaurant during the busy lunchtime period is often 

significantly longer than the time it takes to process your order. Similarly, queuing delays at an 

especially busy shared computer resource can be prolonged. It is important to monitor the queues 

at shared resources closely to identify periods where excessive queue time delays are occurring. 

Queue time can be difficult to measure directly without adding excessive measurement overhead. 

Fortunately, direct measurements of the queue length based on sampling can suffice in many 

situations. A simple equation known as Little’s Law, discussed in more detail below, shows how the 

 Important 

Measurements of either the queue time at a shared resource or the queue 

length are some of the most important indicators of performance you will 

encounter. Queues that are discussed in this book include the operating 

system’s thread scheduling Ready Queue, the logical and physical disk 

queues, the file server request queue, and the queue of ASP.NET web server 

requests. 
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rate of requests, the response time, and the queue length are related. Little’s Law allows us to 

calculate average response times for requests if queue length and arrival rate measurements are 

available. 

If you know the queue length at a device and the average service time, the queue time delay can be 

estimated reliably, as follows: 

 Queue time = queue length * Ave. service time 

This simple formula reflects the fact that any queued request must wait for the request currently 

being serviced to complete.  

Actually, this formula over-estimates queue time to a small degree. When a device is busy and 

another request arrives and finds the queue empty, it must wait until the previous request 

completes. Sometimes the previous request is almost finished and the queue time is much less than 

the average service time. Sometimes the previous request just started and the queue time is quite 

close to the average service time. On average, the queue time of the first request in the queue is 

approximately ½ the service time. Subsequent requests that arrive and find the device busy and at 

least one other request already in the queue are then forced to wait: 

 Queue time = ((queue length-1) * Ave. service time) + (Ave. service time/2) 

Not all computer resources are shared under Windows, which means that these devices effectively 

have no queuing time delays. Input devices like the mouse and keyboard, for example, are managed 

by the operating system so that they are only accessible by one application at a time. Because these 

devices are buffered to match the speed of the people operating them, there is never any queue 

time delay that can be measured.  

OPTIMIZING FOR PERFORMANCE 
It may seem that the goal of any performance and tuning exercise is to maximize throughput and 

minimize response time. In practice, these goals are contradictory. If you try to optimize for 

throughput, you are apt to drive up response time to unacceptable levels as a result. Alternatively, 

minimizing response time by stockpiling only the fastest and most expensive equipment and then 

keeping utilization low in order to minimize queuing delays is not very cost-effective. In practice, 

skilled performance engineers are satisfied if they can achieve a balance between these often 

conflicting objectives:  

• There is relatively high throughput leading to the cost-effective use of the hardware.  

• Queuing delays are minimal, so users are satisfied with performance levels.  
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• System performance is relatively stable, consistent, and predictable.  

Insights from queuing theory, a branch of operations research frequently applied to the analysis of 

computer systems performance, help to explain why these objectives are not so easy to reconcile. I 

have referenced queuing models repeatedly in this chapter. It is time we drill into that topic in 

greater depth. 

Figure 2.3 showed a conventional representation of a computer system modeled as a network of 

queues, with customer requests arriving at a server and a simple queuing mechanism. These are the 

basic elements of a queuing system: customers, servers, and a queue. Figure 2-3 shows a single 

server – and is often labeled the Single Server model – but extensions to multiple servers are 

certainly possible. 

If the server is idle, a customer request arriving at the server is processed immediately. On the other 

hand, if the server is already busy with another request, then the incoming request is queued. If 

multiple requests are waiting in the server queue, the queuing discipline determines the order in 

which queued requests are serviced. The simplest and fairest way to order the queue is to service 

requests in the order in which they arrive. This is also called FIFO (First In, First Out) or sometimes 

First Come, First Served (FCFS). There are many other ways that a queue of requests can be ordered, 

including by priority or by the speed with which they can be processed. 

Figure 2.6 shows a simple queue annotated with symbols that represent a few of the more common 

parameters that define its behavior. There are a large number of parameters that can be used to 

describe the behavior of this simple queue, and we only look at a couple of the more basic and 

commonly used ones. Response time (W) represents the total amount of time a customer request 

spends in the queuing system, including both service time (Ws) at the device and wait time (Wq) in 

the queue. By convention, the Greek letter λ (lambda) is used to specify the arrival rate or frequency 

of requests to the server. Think of the arrival rate as an activity rate such as the rate at which HTTP 

GET requests arrive at a web server, I/O requests are sent to a disk, or packets are sent to a NIC card. 

Larger values of λ indicate that a more intense workload is applied to the system, whereas smaller 

values indicate a light load. Another Greek letter, µ, is used to represent the rate at which the server 

can process requests. The output from the server is either λ or µ, whichever is less, because it is 

certainly possible for requests to arrive at a server faster than they can be processed. 

Ws

Queue

l m min(l,m) 
Wq

Server
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Figure 2.6. A simple queuing model with its parameters.  

Ideally, we hope that the arrival rate is lower than the service rate of the server, so that the server 

can keep up with the rate of customer requests. In that case, the arrival rate is equal to the 

completion rate, an important equilibrium assumption that allows us to consider models that are 

mathematically tractable (i.e., solvable). If the arrival rate, λ, is greater than the server capacity µ, 

then requests begin backing up in the queue.  

Mathematically, we assume arrivals are drawn from an infinite population. This assumption is known 

as an open queuing model. It is an assumption that makes the mathematics easier, but it can lead to 

unrealistic results since the population of potential customer isn’t actually infinite. But, in an open 

model, when λ > µ, the queue length can grow to an infinite length since the arrival rate never slows 

down and the server cannot keep up with the rate of requests. Under these circumstances, the wait 

time (Wq) at the server grows infinitely large. Those of us who have tried to retrieve a service pack 

from a Microsoft web server immediately after its release know this situation and its impact on 

performance. It is actually not possible to solve an open queuing model with λ > µ, but 

mathematicians have developed heavy traffic approximations to deal with this familiar case.  

A very pointed example of an arrival rate, λ, that is greater than the server capacity µ occurs in 

computer networking whenever a fast router attempts to send bulk data to a slow router. This 

happens when you are trying to stream high definition video from a datacenter or cloud media 

server to a distant workstation. The media server has the capability to place video data onto the 

network faster than the workstation can receive and process it. The flow control algorithm used in 

the TCP protocol is designed to deal with this situation by throttling back the arrival rate in order to 

match the service rate of the receiver. In a well-designed video streaming app, the sender attempts 

to negotiate a send rate that matches the capacity of the receiver in order to achieve the highest 

possible bit rate without excessive queuing. 

In real-world situations, we can expect there are actual limits on the population of customers. The 

population of customers could be limited by the number of network interfaces configured in a LAN 

environment, the number of file server connections, the number of TCP connections a web server 

can support, or the number of concurrent open files on a disk. These may be very large limits, but 

they are limits that eventually function to throttle back the arrival rate of requests whenever a large 

enough portion of the customer population have in-flight requests that are queued for service. By 

the way, these are known as closed queuing models. 

Even in the worst bottlenecked situation, in a closed model the queue depth is limited to the size of 

the population. When enough customer requests are bogged down in queuing delays, in real 
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systems, the arrival rate for new customer requests is constrained. Customer requests that are 

backed up in the system choke off the rate at which new requests are generated.  

For a public-facing web portal, the population of potential visitors – effectively, the number of 

humans on the planet with web access – is so large that queuing behavior with virtually no limits is 

eminently possible. The potential number of visitors is so large that popular web applications can 

reasonably be approximated as open queuing models. There is plenty of evidence that shows that 

when web customers encounter large delays in accessing a web site, they are more likely to 

abandon it in favor of some other site with similar content.6 

The purpose of this rather technical discussion is twofold. First, it is necessary to make an unrealistic 

assumption about arrivals being drawn from an infinite population to generate readily solvable 

models. Queuing models break down as λ→ µ, which is another way of saying they break down near 

100% utilization of some server component. Second, you should not confuse a queuing model result 

that shows a nearly infinite queue length with reality. In real systems there are often practical limits 

on queue depth. In the remainder of our discussion here, we will assume that λ < µ. Whenever the 

arrival rate of customer requests is equal to the completion rate, this is viewed as an equilibrium 

assumption. Please keep in mind that the solution of simple queuing models are invalid if the 

equilibrium assumption does not hold; in other words, when the arrival rate of requests is greater 

than the completion rate (λ > µ over some measurement interval) simple queuing models do not 

work. The equilibrium assumption becomes very important when we investigate the relationship of 

response times to utilization and the derivation of Little’s Law. 

BOTTLENECKS 

One of most effective methods in performance tuning is systematically identifying bottlenecked 

resources and then work to remove or relieve them. When the throughput of a particular system 

reaches its effective capacity limits, we say that the system is bottlenecked. The resource bottleneck 

is that component which is functioning at its capacity limit. The bottlenecked resource can also be 

recognized operationally as the resource with the fastest growing queue as the number of 

customers increases.  

1.                                                                                  

6 One of the performance statistics that web site analytics provides is the bounce rate. The bounce rate is 

calculated as the percentages of visitors to a landing page that never visit any other pages of your web site, as a 

percentage of all visitors. This is a statistic that organizations that pay for Google AdWords on per click basis 

track because it is a good measure for how effective your advertising is. When increased Page load times results 

in higher bounce rates, the implication is that potential customers are abandoning the site in favor of a 

competitor’s web site that may be more responsive.  
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Understanding that a computer system is operating at the capacity limit of one of its components is 

an important thing to know. It means, for example, that no amount of tweaking tuning parameters is 

going to overcome the capacity constraint and allow the system to perform more work. You need 

more capacity and any other resolution short of providing some capacity relief is going to fall short! 

Once you have identified a bottlenecked resource, there are some systematic ways that you can go 

about relieving that limit on performance and permit more work to get done. You might consider, 

for example:  

• tune the application so that it runs more efficiently (i.e., utilizes less bandwidth) 

against the specific resource,  

• upgrade the component of the system that is functioning at or near its effective 

bandwidth limits so it runs faster, or  

• spread the application across multiple resources by adding more processors, disks, 

or network segments, etc., and assuming it has the capability to process in parallel.7 

It is possible that none of these alternatives to relieve a capacity constraint will succeed in fixing the 

problem quick enough to satisfy your Users. This is when it might be worthwhile to resort to 

tweaking this or that system or application tuning parameter to provide some short term relief. The 

most important settings for influencing system and application performance in Windows are 

discussed in Section 2. In addition, there are many run-time settings associated with applications 

such as MS Exchange or the MS Internet Information System (IIS) that can impact performance. 

Many application-oriented optimizations are documented in other technical publications or in white 

papers available at www.microsoft.com.  

There are a number of tuning adjustments that you may be able to take advantage of that are built 

into Windows. Many of the tuning mechanisms are designed to kick in automatically, but there may 

be additional tweaks that are worthwhile for you to consider making manually. Some of these built-

in performance optimizations employ intelligent scheduling algorithms. Keep in mind that 

1.                                                                                  

7 Just because an application is not currently running in parallel does not mean that it cannot be restructured to 

do so. There is little alternative for applications that become too large for the available hardware except 

figuring out how to parallelize them. Necessity being the mother of invention, there is no shortage of innovative 

solutions to create parallel versions of programs that previously only ran serially.  

 Important 

The corollary of bottleneck analysis is that a well-tuned system is balanced, 

with no resource queue growing faster than any other. 

http://www.microsoft.com/
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scheduling algorithms have a good opportunity to improve performance only when there are 

enough queued requests outstanding that it makes a difference which request the operating system 

schedules next. Consequently, these performance optimizations only have a significant impact on 

performance when the underlying resource is quite busy. The next section explains the basic theory 

under which these scheduling algorithms operate. 

MANAGING QUEUES FOR OPTIMAL PERFORMANCE 

If there are multiple requests waiting in a queue, the queuing discipline is what determines which 

request is serviced next. Most queues that humans occupy when they are waiting for service are 

governed by the principle of fairness. A fair method of ordering the queue is First Come, First Serve 

(FCFS). This is known as a FIFO queue, which stands for First In, First Out. That is how you find 

yourself waiting in line in a bank in order to cash a check, for example. FIFO is considered fair 

because no request that arrives after another can be serviced before requests that arrived earlier 

are themselves satisfied. Round Robin is another fair scheduling algorithm where customers take 

turns receiving service in the order in which they arrive. Life is not always fair, but fairness is 

certainly something that human beings recognize when they are stuck waiting in a queue. 

UNFAIR SCHEDULING ALGORITHMS 

For performance reasons, the Windows operating system does not always use fair scheduling 

policies for the resource queues it is responsible for managing. Where appropriate, Windows makes 

uses of unfair scheduling policies that can produce better results at a heavily loaded device. The 

unfair scheduling algorithms that are implemented make it possible for devices such as processors 

and disks to work more efficiently under heavier loads. The two most common unfair scheduling 

policies are priority queuing (and often together with preemptive scheduling) and sorting the queue 

based on the expected service time of the request. 

PRIORITY QUEUING WITH PREEMPTIVE SCHEDULING 

Certain work requests are regarded as higher priority than others. If both high priority and low 

priority requests are waiting in the queue, it makes sense for the operating system to schedule the 

higher priority work first. In Windows, queued requests waiting for the processor are ordered by 

priority, with higher priority work taking precedence over low priority work. The priority queuing 

scheme that the operating system uses to manage the processor queue is reviewed in more detail 

later in Section 2.  

The priority queuing scheme used to manage the processor queue in Windows has at least one 

additional wrinkle worth discussing further here. Processor hardware also services high priority 

interrupts. Devices such as disks interrupt the processor to signal that an I/O request that was 

initiated earlier is now complete. When a device interrupt occurs, the processor queues the then 

currently executing program thread and services the device that generated the higher priority 
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interrupt immediately. When higher priority work is scheduled to run immediately and will even 

interrupt a lower priority thread that is already running, it is called preemptive scheduling. Windows 

uses both priority queuing and preemptive scheduling to manage the system’s processor queue. 

Priority queuing has a well-known side effect that becomes apparent when a resource is very heavily 

utilized. If there are enough higher priority work requests to saturate the processor, lower priority 

may get very little service. This is known as starvation. When a resource is saturated, priority 

queuing ensures that higher priority work receives preferred treatment, but lower priority work may 

suffer from starvation. Lower priority work may remain delayed in the queue, receiving little or no 

service for extended periods. The resource utilization measurements that are available in Windows 

for the processor allow you to assess whether the processor is saturated, what work is being 

performed at different priority levels, and whether low priority tasks are suffering from starvation. 

SERVICING SHORTER REQUESTS FIRST 
When queued requests can be sorted according to the expected amount of service time that will be 

needed to complete the request, higher throughput is normally achieved if the shorter work 

requests are serviced first. This is the same sort of optimization that supermarkets use when they 

have shoppers sort themselves into two sets of queues, based on the number items in their 

shopping carts. Sometimes this sorting can be performed on the fly, based on the expected service 

time. Windows implements a form of dynamic sorting to boost the priority of short processor service 

requests that is equivalent to the Mean Time to Wait (MTTW) algorithm. Another area of the system 

where queued requests are ordered by expected service time is when disks are enabled for SCSI 

command tag queuing.  

In scheduling which thread to run next on the processor, giving consideration to processor caching 

effects probably qualifies as a shortest service time first optimization, too. Scheduling a thread to 

run on the same processor in a multiprocessor where it was running last provides an opportunity to 

take advantage of a warm start in the processor hardware caches. Scheduling a thread to run on a 

processor different from the one it was running on last provides guarantees a cache cold start, 

reducing the instruction execution rate until the caches start to reach an equilibrium state. On multi-

socket machines with non-uniform memory access times (or NUMA), the Windows OS thread 

Scheduler also has to consider what socket the thread executed on last. Performance considerations 

for NUMA architectures are discussed in more detail in Section 5. 

It is important to remember that reordering the device’s queue can only have a significant 

performance impact when there is a long queue of work requests that can be rearranged. Over and 

above the magic that intelligent scheduling algorithms can work, it is important to recognize that 

computer systems where a resource remains saturated for an extended period of time, allowing 

lengthy lines of queued requests to build up, is out of capacity. You need to configure machines 

large enough that they have enough capacity to service normal peak loads. While intelligent 
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scheduling at the device can provide some relief, it should never divert your attention from the 

underlying problem, which is a shortage of capacity where you need it most. 

BOTTLENECK ANALYSIS 

 To make the best planning decisions, a traditional approach is to try and understand hardware 

speeds and feeds —how fast different pieces of equipment are capable of running. This is much 

more difficult than it sounds. For example, it certainly sounds like a hard drive attached to a USB 2.0 

interface will run much slower than one attached to a USB 3.0 adaptor. USB 3.0 should beat ol’ USB 

2 every time. But the fact is there may be little or no practical difference in the performance of the 

two configurations. (The reason there may be no difference is because the disk may only transfer 

data at the lower USB 2.0 rate anyway, so the extra capacity of the USB 3.0 interface is not being 

utilized.)  

This example illustrates the principle that a complex system will only run as fast as its slowest 

component. Because there is both theory and extensive empirical data to back up this claim, this 

statement can be propagated as a good expert’s Rule of Thumb. It fact, it provides the theoretical 

underpinning for a very useful analysis technique called bottleneck analysis. The slowest device in a 

configuration is often the weakest link. Find it and replace it with a faster component and you have a 

good chance that performance will improve. Sounds good, but you probably noticed that the rule 

does not tell you how to go about finding this component. Given the complexity of many modern 

computer networks, this seemingly simple task is as easy as finding a needle in the proverbial 

haystack. After all, replace some component other than the bottleneck device with a faster 

component and performance will remain the same.  

In both theory and practice, performance tuning is the process of locating the bottleneck in a 

configuration and removing it somehow. The system’s performance will improve until the next 

bottleneck is manifest, which you can then identify and remove. Removing it usually entails 

replacing it with a newer, faster version of the same component. For example, if network bandwidth 

is a constraint on performance, upgrade the configuration from 1 Gigabit Ethernet to 10 Gigabit 

Ethernet. If network bandwidth actually is the bottleneck, performance should improve.  

A system in which all the bottlenecks have been removed can be said to be a balanced system. All 

the components in a balanced system are at least capable of handling the flow of work from 

component to component without delays building up at any one particular component. For a 

moment, let’s return to the network of computing components where work flows from one 

component (the CPU) to another (the disk), back again, then to another (the network) and back 

again to the CPU depicted in Figure 2-3. When different workload processing components are evenly 

distributed across the hardware devoted to doing the processing, that system is balanced.  
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A balanced system (and not one which is simply over-configured) can be visualized as one where 

workload components are evenly distributed across the processing resources. If there are delays, the 

work that is waiting to be processed is also evenly distributed in the system. Work that is evenly 

distributed around the system waiting to be processed is illustrated in Figure 2-7. Suppose you could 

crank up the rate at which requests arrive to be serviced (think of requests to a SQL Server database, 

for example, or logon requests to an Active Directory authentication server). If the system is 

balanced, you will observe that work waiting to be processed remains evenly distributed across 

system components, as in Figure 2-7.  

 

Figure 2.7. A balanced system is one in which all resource queues grow at the same rate.   

If instead you observe something like what is depicted in Figure 2-8 where the queue in front of one 

of the resources is much longer than any other resource, it is possible to identify with some 
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authority the component that is the bottleneck in the configuration. When work backs up behind a 

bottlenecked device, delays there can cascade, causing delays to build up elsewhere in the 

configuration. Because the flow of work through the system is not like a simple chain of events, but 

more like an interconnected network, how the work that gets backed up overflows and impacts 

processing at other components may not always be obvious. Empirically, it is sufficient to observe 

that work accumulates behind the bottlenecked device at the fastest rate as the workload rate 

increases. Replacing this component with a faster processing component should improve the rate 

that work that can flow through the entire system.  

Figure 2.8. A bottlenecked system is one where work requests back up in the queue for the 

bottlenecked resource faster than any other resource. 
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RESPONSE TIME AND UTILIZATION 

The final topic for discussion in this brief survey of queuing theory is the relationship between 

utilization and response time. The Utilization law specifies that utilization is the product of the 

arrival rate times the service time. If a request arrives at a resource which is idle, it is serviced 

immediately. If the resource is already busy servicing another request when the request arrives, it is 

queued for service, forced to wait until the resource becomes free. It ought to be apparent that the 

busier the resource gets, the more likely it is for a new request to encounter a busy device and be 

forced to wait in a queue.  

Because response time is the sum of service time and queue time,  

  W = Ws + Wq 

we will solve some simple queuing models to calculate the queue time based on utilization. 

It is important to remember that these simple models probably do not model reality too closely – 

these simple models were chosen mainly because they are easy to calculate. Yet experience shows 

that queuing theory can be very useful in explaining how many of the computer performance 

measurements you will encounter behave – up to a point. Some of the important ways these simple 

models fail to reflect the reality of the more complex computer systems also need to be understood 

to allow you to use these mathematical insights wisely. 
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Simple queuing models, as depicted in Figure 2.6, are characterized by three elements: the arrival 

rate of requests, the service time of those requests, and the number of servers to service those 

requests. If those three components can be measured, simple formulas can be used to calculate 

other interesting metrics, including queue time. In addition, both the queue length and the amount 

of queue time requests are delayed waiting for service can be calculated using a simple formula 

known as Little’s Law. Queue time and service time, of course, can then be added together to form 

response time, which is often the term that you are interested in deriving.  

FIGURE 2.9. RESPONSE TIME AS A FUNCTION OF UTILIZATION IN A M/M/1 AND M/D/1 

QUEUING MODEL. 

ARRIVAL RATE DISTRIBUTION 

To put even this simple mathematics to work, however, it is necessary to know both the average 

rate that requests arrive and the distribution of arrivals around the average value. The arrival rate 

distribution describes whether requests are spaced out evenly (or uniformly) over the measurement 

interval or whether they tend to be bunched together (or bursty). Lacking precise measurement data 

on the arrival rate distribution, it is usually necessary to assume that the distribution is bursty (or 

random). A random arrival rate distribution is often a reasonable assumption, especially if there are 

many, independent customers generating the requests. A large population of customers for an 

Internet e-business web site, for example, is apt to generate a randomly distributed arrival rate. 

Response t im e as a f unct ion of  ut i l i zat ion

10

20

30

4 0

50

60

0 % 20 % 4 0 % 60 % 80 % 10 0 %

Ut i l i zat ion

R
e

s
p

o
n

s
e

 T
im

e

M/ M/ 1 M/ D/ 1

( assum es ser v ice t im e = 10 )



Optimizing for performance   38 

 

 

Similarly, an MS Exchange Server servicing the e-mail requests of employees from a large 

organization are also likely to approximate a randomly distributed arrival rate over short intervals of 

an hour or less.  

Over longer intervals, arrival rates for most web and mail requests are likely to show some evidence 

of periodicity. For mail requests are very heavy at a business at the beginning of the business day, 

and tend to spike again in the early afternoon as people return to their desks after lunch. The 

periodicity of web requests at an e-commerce is associated with seasons of the year. For example, 

customer requests tend to peak on Black Monday in the U.S. –the first Monday after the 

Thanksgiving holiday. These characteristic peaks and values are predictable, certainly, but they are 

anything but uniform. 

The assumption that customer arrivals are independent can also be a very poor one, especially when 

the number of customers is very small. Consider, for example, a disk device with only one customer 

like a back-up process or a virus scan. Instead of random arrivals, a disk back-up process schedules its 

I/Os to disk in a very efficient manner. A program execution thread from a back-up program issuing 

disk I/I requests will generally not release another I/O request until the previous one completes. 

When requests are scheduled in this fashion, it is possible for a single program to drive the disk to 

virtually 100% utilization levels without incurring any queuing delay. 

SERVICE TIME DISTRIBUTION 

It is also necessary to understand both the average service time for requests and the distribution of 

those service times around the average value. Again, lacking precise measurement data, it is simple 

to assume that the service time distribution is also random. It will also be helpful to compare and 

contrast the case where the service time is relatively constant, or uniform. We will see that when the 

service time distribution relatively uniform – most requests for service take about the same amount 

to service – queuing delays are minimized. Whenever there is an opportunity to schedule work in a 

way that creates a more uniform service time distribution, it is usually a good idea to try to do this. 

This is one the rationales behind sorting customers at a supermarket checkout line based on the 

number of items in their shopping carts. This is also the rationale behind taking large network data 

transfer requests in and executing them in standard-sized packets. 

The scheduling rationale comes from queuing theory. The two simple cases that are illustrated in 

Figure 2.9 are denoted as an M/M/1 and an M/D/1 model. The standard notation identifies the 

arrival rate distribution / service time distribution / number of servers, where M is an exponential or 

random (or Markovian) distribution, D is a uniform distribution and 1 is the number of servers 

(resources).  

Both curves in Figure 2.9 show that the response time of a request increases sharply as the server 

utilization increases. Since these simple models assume that service time remains constant under 
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load (as discussed above, not always a valid assumption), the increase in response time is due solely 

to increases in the request queue time. While device utilization is relatively low, the response time 

curve remains reasonably flat. But by the time the device reaches 50% utilization, in the case of 

M/M/1, the average queue length is approximately 1.  

At 50% utilization in an M/M/1 model, the amount of queue time that requests encounter is equal 

to the service time. To put it another way, at approximately 50% busy, you can expect that queue 

time results in response time being double the amount of time spent actually servicing the request. 

Above 50% utilization, queue time increases even faster and more and more queue time delays 

accumulate. This is an example of an exponential curve where queue time (and response time) is a 

non-linear function of utilization. As resources saturate, queue time comes to dominate the 

application response time that customers experience. 

The case of M/D/1 shows queue time for a uniform service time distribution that is precisely ½ of 

the M/M/1 case with the same average service time. Evidently, reducing the variability of the service 

time distribution works to reduce queue time delays significantly. Many tuning strategies exploit this 

fact. If work requests are scheduled to create a more uniform service time distribution, queue time – 

and response time – are significantly reduced. As mentioned above, that is why supermarkets, for 

example, separate customers into two or three sets of lines based on the number of items in their 

shopping carts. This smoothes out the service time distribution at each server and reduces the 

overall average queue time for shoppers waiting in line to check out.  

By the way, the formula used to derive the Queue time from utilization and service time for an 

M/M/1 model is shown below: 

 Wq = (Ws * u ) / (1 - u) 

In this formula, u is the device utilization, Ws is the service time, and Wq is the queue time. Note the 

divisor term, which is 1 – u. As u → ∞, Wq also approaches infinity. Wq, of course, is undefined for u 

= 1, or utilization at 100% busy. As discussed above, the formula applies to an open queuing model.  

Figure 2-9 charts this formula for Ws = 10 ms, illustrating that the relationship between the queue 

time Wq and utilization is nonlinear. Up to a point, queue time increases gradually as utilization 

increases, and then each small incremental increase in utilization causes a sharp increase in 

response time. Notice that there is an inflection point or “knee” in the curve where this nonlinear 

relationship becomes marked.8  

1.                                                                                  

8 Since the line chart in Figure 2.9 is the graph of a continuous function, some authorities doubt whether there 

is an actual “knee” in the response time curve that the M/M/1 model depicts. A more empirical description of 



Optimizing for performance   40 

 

 

Notice also that as the utilization u → 1, the denominator term 1 – u → 0 where Wq is undefined. 

This accounts for the steep rise in the right-hand portion of the curve as u → 1. 

A chart like the one shown in 2.9 illustrates some of the reasons why it is so difficult to optimize for 

both maximum throughput and minimal queue time delays:  

• As we push a computer system toward its maximum possible throughput, we also force 

response time to increase rapidly.  

• Reaching for maximum throughput also jeopardizes stability. Near the maximum 

throughput levels, slight fluctuations in the workload cause disproportionately large 

changes in the amount of queue time delay that transactions experience.  

• Maintaining the stability of application response time requires low utilization levels, 

which may not be cost-effective.  

Figure 2-9 strongly suggests that the three objectives we set earlier for performance optimization 

are not easily reconcilable, which certainly makes for an interesting job assignment.  

For the sake of a concrete example, let us return to our example of the wait queue for a disk. As in 

Figure 2-9, let’s assume that the average service time Ws at the disk is 10 ms. When requests arrive 

and the disk is free, requests can be processed at a maximum rate of 1/Ws (1 ÷ 0.010) or 100 

requests per second. That is the capacity of the disk. Το maximize throughput, we should keep the 

disk constantly busy so that it can reach its maximum capacity and achieve throughput of 100 

requests/sec. But to minimize response time, the queue should always be kept empty so that the 

total amount of time it takes to service a request is as close to 10 milliseconds as possible. 

If we could just control the arrival of customer requests (perhaps through scheduling), timing each 

request so that one arrived precisely every Ws seconds (once every 10 ms), we would improve 

performance. If the service time distribution is also uniform, when requests are paced to arrive 

regularly every 10 milliseconds, the disk queue is always empty and each successive request can be 

processed immediately. This succeeds in making the disk 100% busy, attaining its maximum 

potential throughput of 1/Ws requests per second. With perfect scheduling and perfectly uniform 

service times for requests, it is possible to achieve 100% utilization of the disk with no queue time 

delays.  

1.                                                                                  

this curve is that there is an inflection point on the curve where the slope = 1. Above that inflexion point, an 

increase of x in the utilization produces an increase in response time of mx, where m > 1. Below that inflexion 

point, an increase of x in the utilization produces an increase in response time of mx, where m < 1. Whether or 

not you perceive a “knee” in the curve or not, clearly, the underlying system behavior is characteristically 

different above the inflexion point than below it.  
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In reality, we have little or no control over when I/O requests arrive at the disk in a typical computer 

system. In a typical system, there are periods when the server is idle and others when requests 

arrive in bunches. (The arrival rate is bursty.) Moreover, some requests are for large amounts of data 

located in a distant spot on the disk, while others are for small amounts of data located near the 

current disk actuator. In the language of queuing theory, neither the arrival rate distribution of 

customer requests or the service time distribution is uniform. This lack of uniformity causes some 

requests to queue, with the further result that as the throughput starts to approach the maximum 

possible level, significant queuing delays occur. As the utilization of the server increases, the 

response time for customer requests increases significantly during periods of congestion, as 

illustrated by the behavior of the simple M/M/1 queuing model in Figure 2.9. 

In most real world cases, there is an upper limit on Wq based on the size of the population. In the 

case of a web portal, the upper limit on the size of the population can be quite large. In the case of a 

queue where disk requests are parked when the device is busy, the size of the population from 

which arrivals are drawn is likely to be quite small, limited to the number of files that are currently 

active on the disk in the case of a file server, or the number of active threads waiting on IO, in the 

case of an application like SQL Server. Moreover, in the case of disk IO, much of the activity has the 

character of being scheduled, not independent arrivals. If you consider the disk activity associated 

with accessing a file on a file server, successive requests are issued in a serial fashion. Logically, the 

application does not request the next record in the file until the previous request is satisfied. The 

simple assumptions of the M/M/1 model are not always applicable for disk IO.9 

LITTLE’S LAW 

A mathematical formula known as Little’s Law relates response time and utilization. In its simplest 

form, Little’s Law expresses an equivalence relation between response time W, the arrival rate l, 

and the number of customer requests in the system, Q (also known as the Queue Length): 

 Q = l * W 

1.                                                                                  

9 The simple M/M/1 model we discuss here was chosen because it is simple, not because it is necessarily rep-

resentative of real behavior on live computer systems. There are many other kinds of queuing models that 
reflect arrival rate and service time distributions different from the simple M/M/1 assumptions. However, 
although M/M/1 may not be realistic, it is easy to calculate. This contrasts with G/G/1, which uses a general 
arrival rate and service time distribution, i.e., any kind of statistical distribution: bimodal, symptomatic, etc. 
No general solution to a G/G/1 model is feasible, so mathematicians that employ computer models are often 
willing to compromise reality for solvability.  
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Note that in this context the queue length Q refers both to customer requests in service (Qs) and 

waiting in a queue (Qq) for processing.  

Little’s Law is an important enough result that it is probably worth showing how to derive it. Little’s 

Law is a very general result in queuing theory that applies to a large class of queuing models —only 

the equilibrium assumption is required to prove it. Figure 2-11 shows some measurements that 

were made at disk at discrete intervals shown on the X axis. The Y axis indicates the number of disk 

requests during the interval. Our observation of the disk is delimited by the two arrows between the 

start time and the stop time. When we started monitoring the disk, it was idle. Then, whenever an 

arrival occurred at a certain time, we incremented the arrivals counter. That variable is plotted using 

the thick line. Whenever a request completed service at the disk, we incremented the completions 

variable. The completions are plotted using the thin line. 

 



Deriving Little's Law
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The difference between the arrival and completion lines is the number of requests at the disk at that 

moment in time. For example, at the eleventh tick-mark on the X axis to the right of the start arrow, 

there are two requests at the disk, since the arrival line is at 4 and the completion line is at 2. When 

the two lines coincide, it means that the system is idle at the time, since the number of arrivals is 

equal to the number of departures.  

To calculate the average number of requests in the system during our measurement interval, we 

need to sum the area of the rectangles formed by the arrival and completion lines and divide by the 

measurement interval. Let’s define the more intuitive term “accumulated time in the system” for 

the sum of the area of rectangles between the arrival and completion lines, and denote it by the 

variable P. Then we can express the average number of requests at the disk, N, using the expression:  

𝑁 =
𝑃

𝑇
 

We can also calculate the average response time, R, that a request spends in the system (Ws + Wq) 

by the following expression:  

𝑅 =
𝑃

𝐶
 

where C is the completion rate (and C = λ, from the equilibrium assumption). This merely says that 

the overall time that requests spent at the disk (including queue time) was P, and during that time 

there were C completions. So, on average, each request spent P/C units of time in the system.  

Now, all we need to do is combine these two equations to derive Little’s Law:  

𝑁 =
𝑃

𝑇
=  

𝐶

𝑇
×  

𝑃

𝐶
=  𝜆 × 𝑅 

Little’s Law says that the average number of requests in the system is equal to the product of the 

rate at which the system is processing the requests (with C = λ, from the equilibrium assumption) 

times the average amount of time that a request spends in the system. 

To make sure that this new and important law makes sense, let’s apply it to our disk example. 

Suppose we collected some measurements on our system and found that it can process 200 read 

requests per second. The Windows Performance Monitor also told us that the average response 

time per request was 20 ms (milliseconds) or 0.02 seconds. If we apply Little’s Law, it tells us that the 

average number of requests at the disk, either in the queue or actually in processing, is 200 × 0.02, 

which equals 4. This is how Windows derives the Physical Disk Avg. Disk Queue Length and Logical 

Disk Avg. Disk Queue Length counters. More on that topic in Section 2. 
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APPLYING LITTLE’S LAW 

In Windows there are several places where the developers try to take advantage of Little’s Law to 

estimate response time of requests where only the arrival rate and queue length are known. For the 

record, Little’s Law is a very general result. It allows you to estimate response time in a situation 

where measurements for both the arrival rate and the queue length are available. Note that Little’s 

Law itself provides no insight into how response time is broken down into service time and queue 

time delays. 

Direct measures of application response time are not as plentiful in Windows, and this is 

unfortunate. However, it is very difficult to define suitable boundaries for requests in Windows 

desktop applications, considering the sometimes continuous flow of mouse-move messages, for 

example. This perhaps explains why there are not more direct measurements of response time 

available. Using Little’s Law, there is at least one instance that will be discussed later in this section 

of the book where it is possible to derive estimates of response time from the available performance 

counters, but these are inferior to direct measurements. 

The response time to service a request at a resource is usually a nonlinear function of its utilization. 

This nonlinear relation between response time and utilization that usually holds is known as Little’s 

Law. Little’s Law explains why linear scalability of applications is so difficult to achieve. It is a simple 

and powerful construct, with many applications to computer performance analysis. However, don’t 

expect simple formulas like Little’s Law to explain everything in computer performance. The next 

Section, for example, will highlight several common situations where intelligent scheduling 

algorithms are used that actually reduce service time at some computer resources the busier they 

get. You cannot apply simple concepts like Little’s Law unreflexively to many of the more 

complicated situations you can expect to encounter. 

QUEUING THEORY IN PRACTICE 
This brief mathematical foray is intended to illustrate the idea that attempting to optimize 

throughput while at the same time minimizing response is inherently difficult, if not downright 

impossible. It also suggests that any tuning effort that makes the arrival rate or service time of 

customer requests more uniform is liable to be productive. It is no coincidence that this happens to 

be the goal of many popular optimization techniques. It further suggests that a better approach to 

computer performance tuning and optimization should stress analysis, rather than simply dispensing 

advice about what tuning adjustments to make when problems occur.  

The first thing you should do whenever you encounter a performance problem is to measure the 

system experiencing the problem to try to understand what is going on. Computer performance 

evaluation begins with systematic, empirical observations of the systems at hand.  
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In seeking to understand the root cause of many performance problems, I rely on a practical 

approach to the analysis of computer systems performance that is informed by theory, drawing 

heavily on insights garnered from queuing theory. Ever notice how construction blocking one lane of 

a three-lane highway causes severe traffic congestion during rush hour? You may notice a similar 

phenomenon on the computer systems you are responsible for when a single component becomes 

bottlenecked and delays at this component cascade into a problem of major proportions. Network 

performance analysts use the descriptive term storm to characterize the chain reaction that 

sometimes results when a tiny aberration becomes a big problem.  

Long before chaos theory, it was known that queuing models of computer performance can 

accurately depict this sort of behavior mathematically. Little’s Law predicts that as utilization of a 

resource increases linearly, response time increases exponentially. The nonlinear relationship that 

was illustrated in Figure 2-9 means that quite small changes in the workload can result in extreme 

changes in performance indicators, especially as important resources start to become bottlenecks.  

This is exactly the sort of behavior you can expect to see in the computer systems you are 

responsible for. Most computer systems do not degrade gradually. Queuing theory is a useful tool in 

computer performance evaluation because it is a branch of mathematics that models systems 

performance realistically. The painful reality we face is that performance of the systems we are 

responsible for is acceptable day after day, until quite suddenly it goes to hell in a handbasket. This 

abrupt change in operating conditions often begets an atmosphere of crisis. The typical knee-jerk 

reaction is to scramble to identify the thing that changed and precipitated the emergency. 

Sometimes it is possible to identify what caused the performance degradation, but more often it is 

not so simple.  

With insights from queuing theory, we learn that it may not be a major change in circumstances that 

causes a major disruption in current performance levels. In fact, the change can be quite small and 

gradual and still produce a dramatic result. This is an important perspective to have the next time 

you are called upon to diagnose a Windows performance problem. Perhaps the only thing that 

changed is that a component on the system has finally reached a high enough level of utilization 

where slight variations in the workload provoke drastic changes in behavior.  

A full exposition of queuing theory and its applications to computer performance evaluation is well 

beyond the scope of this book. Readers interested in pursuing the subject might want to look at 

Daniel Mensace’s Performance by Design or Raj Jain’s encyclopedic The Art of Computer Systems 

Performance Analysis.  

EXPLORATORY DATA ANALYSIS 

http://www.amazon.com/Performance-Design-Computer-Capacity-Planning/dp/0130906735/ref=sr_1_2?s=books&ie=UTF8&qid=1390442685&sr=1-2&keywords=Daniel+Menasce
http://www.amazon.com/The-Computer-Systems-Performance-Analysis/dp/0471503363/ref=pd_sim_b_1
http://www.amazon.com/The-Computer-Systems-Performance-Analysis/dp/0471503363/ref=pd_sim_b_1
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Investigating the cause of some form of performance problem requires computer measurement. 

Understanding what is measured, how measurements are gathered, and how to interpret them is 

the critical to computer performance evaluation. You cannot manage what you cannot measure, but 

fortunately, measurements are pervasive. Many, many hardware and software components support 

measurement interfaces.  

In fact, due to the volume of computer measurement data that is available, it is frequently necessary 

to use statistical techniques to summarize and report computer usage data. This certainly holds true 

on Windows, which is capable of providing copious amounts of measurement data. Hopefully, the 

Reader has a solid background in basic statistical concepts, including descriptive statistics, 

multivariate analysis, and time series data.  

Sifting through all the measurements that are potentially available demands an understanding of a 

statistical approach known as exploratory data analysis,10 rather than the more familiar brand of 

statistics that uses probability theory to test the likelihood that a hypothesis is true or false. For a 

good reference introducing exploratory data analysis, see the introductory chapter in the 

NIST/Sematech Engineering Statistics Handbook that is published online at 

http://www.itl.nist.gov/div898/handbook/index.htm. This books make frequent use of visual 

displays of information, including histograms, scatter plots and box plots.  

Many of the case studies described in this book apply the techniques of exploratory data analysis to 

understanding Windows computer performance. Rather than explore the copious performance data 

available on a typical Windows platform at random, however, our search is informed by the 

workings of computer hardware and operating systems in general, and of the Windows OS, Intel 

processor hardware, computer disks, and network interfaces in particular.  

Because graphical displays of information are so important to this process, techniques of scientific 

visualization are also relevant. (It is always gratifying when there is an important-sounding name for 

what you are doing!) Edward Tufte’s absorbing books on scientific visualization, including Visual 

Explanations and The Visual Display of Quantitative Information, are an inspiration. In many place in 

this book, we will illustrate the discussion using exploratory data analysis techniques. In particular, 

we will look for key relationships between important measurement variables. Those illustrations rely 

heavily on visual explanations of charts and graphs to explore key correlations and associations. It is 

a technique I recommend highly.  

1.                                                                                  

10 John Tukey’s classic textbook entitled Exploratory Data Analysis (recently back in print) or Understanding 

Robust and Exploratory Data Analysis by Hoaglin, Mosteller,and Tukey provide a very insightful introduction to 

using statistics in this fashion.  

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.amazon.com/Visual-Explanations-Quantities-Evidence-Narrative/dp/0961392126/ref=pd_bxgy_b_text_z
http://www.amazon.com/Visual-Explanations-Quantities-Evidence-Narrative/dp/0961392126/ref=pd_bxgy_b_text_z
http://www.amazon.com/The-Visual-Display-Quantitative-Information/dp/0961392142/ref=pd_sim_b_9
http://www.amazon.com/Exploratory-Data-Analysis-John-Tukey/dp/0201076160/ref=pd_sim_b_1
http://www.amazon.com/Understanding-Robust-Exploratory-Data-Analysis/dp/0471384917/ref=sr_1_3?s=books&ie=UTF8&qid=1390704182&sr=1-3&keywords=john+tukey
http://www.amazon.com/Understanding-Robust-Exploratory-Data-Analysis/dp/0471384917/ref=sr_1_3?s=books&ie=UTF8&qid=1390704182&sr=1-3&keywords=john+tukey
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In computer performance analysis, measurements, models, and statistics remain the tools of the 

trade. Knowing what measurements exist, how they are taken, and how they should be interpreted 

is a critical element of the analysis of computer systems performance. That topic is addressed in 

detail in Section 2 of this book, which is designed to help you acquire a firm grasp of the most 

important categories of measurement data available in Windows, how it is obtained, and how it 

should be interpreted. 


